As a new user of the revolutionary Lamina Multi-Mat[®] (Multi Material) inserts, we would like to present to you a short machining guide to insure your satisfaction from our product.

The cutting data specified in this guide should be considered as a good starting point. Each insert is able to perform in a wider range of cutting conditions.

For complete cutting data please see our catalog or our online catalog at our web site www.lamina-tech.ch

Milling

- 1. Select the material group to be machined. In case of doubt, refer to material reference pages in the catalog.
- 2. Check machining recommendations with or without coolant.
- 3. Select feed as a function of the tool lead angle.
- 4. The cutting speed is indicated in the right-hand column.

Basic cutting conditions for first time user - Milling

Material Group	Group	Material Examples	hardness	0	feed per tooth		Initial	
	No	materiai examples	BHn	Coolant	45 ⁰	90 ⁰	SFM	
Low Carbon Steel	1	1018 / 1020	150		0.012	0.009	1000	
		1026 / 12414	180	No			875	
		1045	210				750	
Alloy Steel	2	8620	180		0.010	0.007	750	
		4140	230	No			700	
		4340	280	INU			550	
		52100	320				360	
High Alloy Steel	3	ASTM A353	220		0.009	0.006	425	
			280	Vac			350	
		H13	320	Tes			325	
			350				280	
Austenitic Stainless Steel	4	303 / 304	210	No	0.010	0.007	700	
		304 L	10 200					
	5	316 / 316 L	230 to 270	Yes	0.009	0.006	600	
	6	316 Ti 630 (F16PH)	230 to 270	Yes	0.009	0.005	300	
Ferritic Stainless Steel	7	430 / 439 / 444	200 to 300	No	0.010	0.007	650	
Martensitic Stainless Steel	8	410 / 420	200 to 300	No	0.010	0.007	650	
Grey Cast Iron	9	Class 20	140		0.012	0.009	750	
		Class 30	140 to 250	No			700	
		Class 40	10 200				600	
Nodular Cast Iron	10	60-40-18	210		0.010	0.006	570	
		80-55-06	260	Yes			450	
		1000-70-03	310				400	
Nickel Based Alloys	11	Inconel 625		Yes	0.009	0.006	100	
		Inconel 718					100	
		Hastelloy C					170	
Titanium Based Alloys	12	TiAl 6 V4		Voc	0.009	0.006	150	
		T40		163			140	
Aluminium	13	Si < 4%		Yes	0.10	0.006	2400	
		4% < Si < 9%			0.007	0.005	1350	
			For Alu gro	oup 13, please use our Alu line grade LT-05				
Aluminium	14	Si >9%	Yes 0.010 0.006 750					
manimum	14		For Alu group 14, please use inserts grade LT-10					

Milling tips

- The cutting conditions are Lamina Technologies guidelines for optimal machining, however our inserts can work in a wider range of cutting conditions to meet special machining needs
- · It is always recommended to machine in Climb Milling' way.
- For Stainless Steel, work over the minimum speed, as machining Stainless
- Steel at low speeds causes material sticking. · Coolant recommendations:
- Use coolant with materials from groups 11, 12
- Do not use coolant with materials from groups 1, 2, 3, 4, 7, 9, 10. Use coolant with materials from groups 5, 6, 8 -depending on the application.
- · Do not use coolant if it is not efficient enough.
- · In any case of vibrations, we recommend reducing cutting speed and/ or Depth Of Cut. and increasing feed rate. Also always the Cutter's shank should be as short as possible and as wide as possible.
- Always check clamping stability.
- If chips are turning with the cutter, increase cutting speed, feed rate or both.
- If the work piece warms up, increase feed rate.
- Always verify that the tool holder is in good condition (not damaged).
- The above values are indicated as functions of the cutting edge angle, i.e. kappa 45° or 90°. The high feed relates to cutting inserts for surfacing, attack angles 45° and 75°. The low feed relates to cutting inserts for surfacing, trimming angle 90°. The above-mentioned cutting conditions are indicated for each material group and the respective hardness.

Turning

- 1. Select the material group to be machined. In case of doubt, consult material reference pages in the catalog.
- 2. Select the insert nose radius.
- 3. Select cutting depth and feed according to radius. 4. The cutting speed is indicated in the right-hand column. Turning tips
- The cutting conditions are Lamina Technologies guidelines for optimal machining, however our inserts can work in a wider range of cutting conditions to meet special machining needs.
- · If working according to our recommended cutting conditions A-max should be respected.
- For Stainless Steel, work over the minimum speed, as machining Stainless Steel at low speeds causes material sticking.
- Coolant recommendations
- Use coolant with materials from groups 6, 7, 8, 9, 10, 11, 12.
- Do not use coolant with materials from groups 1, 2, 4. Use

coolant with materials from groups 3, 5 - depending on the application.

Basic cutting conditions for first time user - Turning

Material Group	Group No	Material Examples	hardness BHn	Nose radius 1/64" (04)		Nose radius 2/64" (08)		Nose radius 3/64" (12)		Initial
				d.o.c	f	d.o.c	f	d.o.c	f	SFM
Low Carbon Steel	1	1018 / 1020	150	0.015 to 0.060	0.004 to	0.030	0.009 to 0.011	0.040 to 0.200	0.012 to 0.020	1300
		1026 / 12414	180			o to 106 0.125				975
		1045	210		0.006					825
		8620	180	0.015 to 0.060	0.004 to 0.005	0.030 to 0.125	0.009 to 0.011	0.040 to 0.157	0.012 to 0.018	1000
Alloy Steel	2	4140	230							800
		4340	280							675
		52100	320							550
		ASTM A353	220	0.015 to 0.060	0.004	0.030 to 0.125	0.008 to 0.010	0.040 to 0.125	0.013 to 0.018	525
High Alloy Steel	2		280							400
	3	H13	320							350
			350							300
	4	303 / 304	210	0.015 to	0.005 to	0.030 to	0.007 to	0.040 to	0.012 to	700
	4	304 L	to 250	0.060	0.006	0.125	0.012	0.200	0.020	700
Austenitic Stainless Steel	5	316 / 316 L t	230	0.015 to	0.004 to	0.030 to	0.007 to 0.010	0.040 to 0.157	0.011 to 0.018	600
	Ů		to 270	0.060	0.006	0.125				000
	6	316 Ti	230 to 270	0.015 to 0.050	0.005	0.030 to 0.125	0.007 to 0.010	0.040 to 0.125	0.011 to 0.018	350
		630 (F16PH)								000
Ferritic Stainless Steel	7	430 / 439 / 444 2 to	200	0.015 to 0.060	0.005 to 0.006	0.030 to 0.125	0.009 to 0.011	0.030 to 0.157	0.012 to 0.018	600
			to 300							
Martensitic	8	410 / 420	200	0.015 to	0.005 to	0.030 to	0.009 to	0.030 to	0.012 to	600
Stainless Steel	-		to 300	0.060	0.006	0.125	0.011	0.157	0.018	450
Grey Cast Iron	9	Class 20	140	0.008 to 0.060	0.003 to 0.006	0.030 to 0.187	0.007 to 0.014	0.030 to 0.200	0.012 to 0.024	750
		Class 30	to 250							700
		Class 40								625
Nodular Cast Iron	10	60-40-18	210	0.008 to 0.060	0.004 to 0.005	0.030 to 0.125	0.007 to 0.012	0.030 to 0.200	0.012 to 0.020	625
		80-55-06	260							550
		1000-70-03	310							450
Nickel Based Alloys	11	Inconel 625		0.009 to 0.047	0.004 to 0.005	0.030 to 0.125	0.007 to 0.011	0.030 to 0.125	0.012 to 0.017	100
		Inconel 718								115
		Hastelloy C								200
Titanium Based	12	TiAl 6 V4		0.009 to	0.004 to	0.030 to	0.007 to	0.030 to	0.012 to	165
Alloys		T40		0.047	0.006	0.125	0.012	0.157	0.018	125
Aluminium	13	Si < 4%		0.008 to	0.005 to	0.008 to	0.006 to			2400
Aluminium		4% < Si < 9%		0.200	0.010	0.200	0.020			1350
				For Alu group 13, please use our Alu line grade LT-05						
Aluminium	14	Si >9%		0.020-0.200 0.003-0.009 0.020-0.200 0.007-0.016 0.020-0.200 0.009-0.024 750						
			For Alu group 14, please use inserts grade LT-10							

speed, and increasing feed rate.

tion (not damaged).

rate.

• Always verify that the tool holder and shim are in good condi-

· If cutting chips are too long, we recommend increasing feed

• If cutting chips are not controlled (vary in shape and size), we

recommend increasing feed rate and reducing depth of cut.

• For internal boring operation, the tool holder should be as

• In any case of vibrations, we recommend reducing cutting

In strong interrupted cut, feed rate should be reduced.

short as possible and shank as wide as possible.

4